Reactor Neutrino Experiments

Stuart Freedman
Lawrence Berkeley National Laboratory
and
University of California at Berkeley
INFO 05
Santa Fe, New Mexico
July 11, 2005

First Direct Detection of the Neutrino

The version of Reines' experiment that worked

Neutrino Spectra from Principal Reactor Isotopes

Inverse Beta Decay Cross Section

Initial n
$$\sigma_{\text{tot}}^{(0)} = \sigma_0(f^2 + 3g^2) E_e^{(0)} p_e^{(0)}$$

$$\sigma_{\text{tot}}^{(0)} = \sigma_0(f^2 + 3g^2) E_e^{(0)} p_e^{(0)}$$

$$= 0.0952 \left(\frac{E_e^{(0)} p_e^{(0)}}{1 \text{ MeV}^2} \right) \times 10^{-42} \text{ cm}^2$$

$$\sigma_0 = \frac{G_F^2 \cos^2 \theta_C}{\pi} (1 + \Delta_{inner}^R) \qquad \sigma_{tot}^{(0)} = \frac{2 \pi^2 / m_e^5}{f_{p.s.}^R \tau_n} E_e^{(0)} p_e^{(0)}$$

Positron Spectrum

Neutrino Spectrum

Neutrino mixing matrix

$$\begin{split} U &= \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{CP}}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha/2} & 0 \\ 0 & 0 & e^{i\alpha/2+i\beta} \end{pmatrix} \end{split}$$

SuperK, K2K

$$\theta_{23} = \sim 45^{\circ}$$

Reactors Accelerators SNO, SuperK, KamLAND

$$\theta_{12} \sim 32^{\circ}$$

Neutrino Mass

Neutrino Mass

Neutrino Oscillations

In the rest frame

$$\left|\Psi_{e}(t)\right\rangle = \cos(\theta)e^{-im_{1}c^{2}t/\hbar}\left|\nu_{1}\right\rangle + \sin(\theta)e^{-im_{2}c^{2}t/\hbar}\left|\nu_{2}\right\rangle$$
$$\left|\left\langle\Psi_{e}(t)\right|\Psi_{e}(0)\right\rangle\right|^{2} = 1 - \sin^{2}(2\theta)\sin^{2}(\frac{(m_{2} - m_{1})c^{2}}{2\hbar}t)$$

Boost to the lab frame

$$P_{ee} = 1 - \sin^2(2\theta)\sin^2(1.27\frac{\Delta m_{12}^2 L}{E})$$

Long-Baseline Reactor-Anti-Neutrino Experiments

Reactor Disappearance

Monolithic Anti-Neutrino Detectors

KamLAND

CHOOZ

20 % of world nuclear power

3.2 ton water veto

Detector Energy Scale and Response

Co60 At Center Of Detector

60**Co**: 1.173+1.333 MeV

 Δ E/E ~ 7.5% / \sqrt{E} 17" tubes alone Δ E/E ~ 6.2% / \sqrt{E} 17" and 20"

•

Uniformity of detector response

Candidate Neutrino Event

 $\chi^{2}_{/11 \text{ d.o.f}} = 13$

Chooz Correlation of Count Rate and Reactor Power

KamLAND Correlation of Count Rate and Reactor Power

Systematic Uncertainties

E > 2.6 MeV

	%
Fiducial mass ratio	4.7
Energy threshold	2.3
Efficiency of cuts	1.6
Live time	0.06
Reactor power	2.1
Fuel composition	1.0
$\overline{\mathrm{v}}_{\mathrm{e}}$ cross section	0.2
	
Total uncertainty	6.5 %

2004 Data Set

Is the Neutrino Spectrum Distorted?

11.1% $\chi_p^2/DOF = 24.2/17$.

0.4% ($\chi_p^2/DOF = 37.3/18$).

$$\chi^{2}_{/11 \text{ d.o.f}} = 13$$

Global Fit to KamLAND and Solar Experiments

Looking for the oscillation effect

$$\left|\left\langle \Psi_e(t) \middle| \Psi_e(0) \right\rangle \right|^2 = 1 - \sin^2(2\theta) \sin^2(\frac{(m_2 - m_1)c^2}{2\hbar}t)$$

$$P_{ee} = 1 - \sin^2(2\theta)\sin^2(1.27\frac{(m_2^2 - m_1^2)L}{E})$$

$$L = c \bullet t_{lab} \qquad t_{restframe} = \frac{t_{lab}}{\gamma} = \frac{m}{E} t_{lab}$$

Observing the oscillations in the neutrino rest frame

•An expeditiously deployed multidetector reactor experiment with sensitivity to v_e disappearance down to $\sin^2 2\theta_{13} = 0.01$, an order of magnitude below present limits.

- disappearance experiment $\overline{v}_e \rightarrow \overline{v}_e$
- look for rate deviations from 1/L2 and spectral distortions
- observation of oscillation signature with 2 or multiple detectors
- baseline O(1 km), no matter effects

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v} \right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v} \right)$$

•A timely accelerator experiment with comparable $sin^2 2\theta_{13}$ sensitivity and sensitivity to the mass hierarchy through matter effects.

- appearance experiment $\nu_{\mu} \rightarrow \nu_{e}$
- measurement of $\nu_{\mu} \to \nu_{e}$ and $\overline{\nu_{\mu}} \to \overline{\nu_{e}}$ yields $\theta_{13},\,\delta_{CP}$
- baseline O(100 -1000 km), matter effects present

$$P_{\mu e} \approx \sin^2 2\theta_{13} \sin^2 2\theta_{23} \sin^2 \frac{\Delta m_{31}^2 L}{4E_{\nu}} + \dots$$

Reactor Anti-Neutrino Disappearance

Many proposed sites for new reactor experiments

Experimental Strategy in the Simplest Case

Reactor

$$R_{1aA} = \frac{F_A}{4\pi L_a^2} \varepsilon_1 (1 - \delta_a)$$

$$\frac{R_{1aA}}{R_{2bA}} \frac{R_{2aB}}{R_{1bB}} = \frac{L_b^4}{L_a^4} \frac{(1 - \delta_a)^2}{(1 - \delta_b)^2} \approx \frac{L_b^4}{L_a^4} \left[1 - 2(\delta_a - \delta_b)\right]$$

$$(\delta_a - \delta_b) \approx \sin^2(2\theta_{13}) \left[\sin^2(1.27 \frac{\Delta m_{13}^2 L_a}{E}) - \sin^2(1.27 \frac{\Delta m_{13}^2 L_b}{E}) \right]$$

Daya Bay/Ling Ao Nuclear Power Plant

- Powerful: Four reactors (4 units 11.6 GW E_{th} Eventually 6 units 17.4 GW E_{th})
- · Overburden: Horizontal tunnel could give 1100 mwe shielding
- Infrastructure: Construction roads. Controlled access. Not close to wineries.

Spectral Distortions with 3 Baselines

• 3 baselines provide consistency checks and eliminate single point failure of experiment, in particular if the backgrounds too high in near detector or unaccounted systematics in one of detectors

Significant tunnels already exist at the Daya Bay site

On site service tunnel near DB reactor

1.5 km single lane tunnel at site

Daya Bay quarry will be filled with the tailings

1/2 of waste rock is used for overburden

Movable Detectors Modules Electronics About 40cm of oil 40 ton FV PMTs on Barrel buffer to reduce bgds

Manufactures have experience with large double walled acrylic structures

Stress Analysis of acrylic

Monte Carlo evaluation of detector designs

Barrel-Mounted

Endcap-Mounted

Response to Positrons

Response to 2x0.511 MeV

Locomotion with commercially available airplane tugs

Problem: transport ~150 ton detectors in 1-2 km long tunnels

Ingersoll-Rand T-350

- · 35,000 lb draw bar pull
- · 6 cylinder diesel, 192 hp
- 16.5 feet long, 8 feet wide, 8.5 feet tall

Hough TD-500

- up to 747s
- 50,000 lb draw bar pull
- · 8 cylinder diesel engine
- 65,000 lbs
- 26 feet long, 9 feet wide, 5 feet tall

Stewart and Stevenson GT-110

- 78,000 lb draw bar pull for gross vehicle weights up to 120,000 lb
- 6 cylinder diesel engine, 255 hp, 700 lb-ft max torque
- · 4 forward gears, 3 reverse gears
- 5 mph @ 17,500 drawer bar pull (3rd gear); max is 13.5 mph

Electrically powered Tractors

Solution: Hilman rollers with Accu-Roll guidance system and tugs.

Detector Halls (Water Rooms)

Muon Veto

MINOS extruded
Scintillators

Liquid Scintillator

- Gd-loaded LS: $\sigma_{capture}$ ~ 40,000 barns, E_{γ} ~ 8 MeV R&D to find stable 0.1% mixture underway at BNL and IHEP
 - Chooz and Palo Verde used Gd dissoved in alcohol. Found to be unstable.
 - The BNL group is working with carboxylic acid produced metal-organo chemical complexes dissolve in LS producing stable mixtures. Attenuation lengths of ~ 10 m and no degradation over many months of aging tests made so far.

Calibration

• A rigorous and well formulated calibration program is essential to a successful reactor experiment.

A novel ¹⁶N source is under development

- Gamma ray calibration sources with an empirically supported connection to positron energy deposition.
- Neutron sources
- lasers and LEDs
- electron and positron sources
- Spallation produced products: 12B, n-capture reactions.

Backgrounds

- Uncorrelated backgrounds from radioisotope contamination and residual muon produced spallation products.
- · Correlated backgrounds from moun produced fast neutrons and beta delayed neutron decaying isotopes.

KamLAND ~ 1000 tons ~ 2700 mwe ~0.3 v_e/day

Much can be learned about the backgrounds from the experiences of the previous monolithic detectors

Inconsistencies in the estimates of ⁹Li Backgrounds

Time spectrum of neutrino candidates following muons

KamLAND Data

Staged Approach: Phase I Running

Staged Approach: Phase II Running

Staged Approach: Phase III

Another Possibility: Simultaneous

Sensitivity

Scenario Total Tonnage (t)

near1/near2/mid/far

near/mid 40-0-40

mid/far 0-0-80-120

near/far 0-0-80-120

Source of error		CHOOZ	Daya Bay	
			Baseline	Goal
# protons	H/C ratio	0.8	0.2	0.1
	Mass	-	0.2	0.02
Detector	Energy cuts	0.8	0.2	0.05
Efficiency	Position cuts	0.32	0.0	0.0
	Time cuts	0.4	0.1	0.03
	H/Gd ratio	1.0	0.01	0.01
	n multiplicity	0.5	0.05	0.01
	Trigger	0	0.01	0.01
	Live time	0	< 0.01	< 0.01
Total detector-related uncertainty		1.7%	0.36%	0.12%

Timeline and Sensitivity of the Daya Bay Project

July 2007

Start of data taking at near and mid sites

2009

First result based on near and mid sites.

Start of data taking at far site.

2010

First result based on data from far site

